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Abstract 

Because most practical logic design algorithms produce 
irredundant sum-of-products (ISOP) expressions, the un- 
derstanding of ISOPs is crucial. We show a class of func- 
tions for which Morreale-Minato ’s ISOP generation algo- 
rithm produces worst ISOPs (WSOP), ISOPs with the most 
product terms. We show this class has the property that the 
ratio of the number of products in the WSOP to the num- 
ber in the minimum ISOP (MSOP) is arbitrarily large when 
the number of variables is unbounded. The ramifications of 
this are significant; care must be exercised in designing al- 
gorithms that produce ISOPs. 

We also show that 2”-’ is a (firm) upper bound on the 
number of product terms in any ISOP for switching func- 
tions on n variables, answering a question that has been 
open for 30 years. We show experimental data and extend 
our results to functions of multiple-valued variables. 
Index terms: Logic minimization, irredundant sum-of- 
products, multiple-valued logic. 

1 Introduction 
The majority of logic minimization algorithms used in 

practical design produce irredundant sum-of-products ex- 
pressions (ISOPs) rather than minimum sum-of-products 
expressions (MSOPs). For example, the PRESTO [2, 211 
logic minimizer produces an ISOP as follows: 

1) Expand each product into a prime implicant 
2) Delete redundant prime implicants. 

An ISOP is the OR of prime implicants such that deleting 
any prime implicant changes the function. For example, two 
expressions XIZZ vxZZ3VZlx3 and x1fzVxlE3 V 3 1 2 2 V E 1 2 3  
are both ISOPs for the same function (See Fig I(a) and 
(b)). However, only the former is an MSOP. Depending 
on one’s viewpoint, the second ISOP has only one more 
product than the first, or 33% more products. 

These two viewpoints inspire the first question: “Can 
a logic minimization algorithm yield unreasonably large 
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SOPS?” The answer is yes. We show that there exists an 
algorithm [13, 141 that produces worst ISOPs (WSOPs), 
ISOPs with the largest number of product terms, for some 
class of functions. 

The question above and its surprising answer inspire 
the second question: “To what extent can the number of 
products in a WSOP exceed the number of products in an 
MSOP?” The answer to this is also surprising. We show 
there exist functions in which the ratio of the WSOP prod- 
uct count to MSOP product count is arbitarily large, when 
the number of variables is unbounded. 

While our results are motivated by the existence of bi- 
nary logic functions, we show that a similar phenomenon ex- 
ists for functions of a higher radix. Our results suggest that 
the disparity between the number of products in multiple- 
valued WSOPs and MSOPs increases with radix. 

2 Definitions and Basic Properties 
Definition 2.1 x and E are literals of a variable x. A log- 
ical product that contains a t  most one literal for each vari- 
able is called a product term or  a product. Products com- 
bined with OR operators form a sum-of-products expression 
(SOP). 

Definition 2.2 A prime implicant (PI) of a function f 2s 
a product which implies f, such that the deletion of any 
literal from the product results in a new product that does 
not imply f. 

Definition 2.3 An irredundant sum-of-products expres- 
sion (ISOP) is an  SOP, where each product is a PI, and no 
product can be deleted without changing the function repre- 
sented by the expression. 

Definition 2.4 Among the ISOPs for f, one with the max- 
imum number of products is a worst ISOP (WSOP), and 
one with the minimum number of products is a minimal 
SOP (MSOP). 

Definition 2.5 The number of products in a WSOP for f 
is denoted by r ( W S 0 P  : f). The number of products in an  
MSOP for f is denoted by r ( M S 0 P  : f). 
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The following is well known [7, 151 

Theorem 2.1 For a n y  switching func t ion  of n variables, 
r ( M S 0 P  : f) 5 2n-1. 

Our first result shows that Theorem 2.1 is also true when 
we replace MSOP by WSOP. It answers an open question 
posed by Meo [lo] in 1968. 

Theorem 2.2 For a n y  switching func t ion  of n variables, 
r ( W S 0 P  : f) 5 2n-1. 

(Proof) Available form the authors. 
There exists a WSOP with 2n-1 products; it is the SOP 

of a parity function of n variables. Thus, the upper bound 
in Theorem 2.2 is tight. 

Lemma 2.1 Let  g ( X )  and h ( Y )  be functions,  where X 
and Y have n o  c o m m o n  variables. Let G ( X )  and H ( Y )  
be ISOPs f o r  g ( X )  and h ( Y ) ,  respectively. Then ,  the SOP 
F ( X ,  Y )  derived f r o m  G ( X ) H ( Y )  by using distributive laws 
is  a n  ISOP for  f. 

(Proof) Clearly, F ( X , Y )  represents f. If any product in 
F ( X ,  Y )  is not a PI,  then either G ( X )  or H ( Y )  or both con- 
tain a non-prime product, which contradicts the assumption 
that G ( X )  and H ( Y )  are ISOPs. If any product in F ( X ,  Y )  
is redundant, then either G ( X )  or H ( Y )  or both contain a 
redundant product which contradicts the assumption that 

I 
Our next result shows that if a function f ( X , Y )  can 

be expressed as the AND of two functions, g ( X )  and h(Y)  
on disjoint sets of variables, then the number of product 
t a m s  in a WSOP (MSOP) of f ( X ,  Y )  is the product of the 
number of products in a WSOP (MSOP) of g ( X )  and a 
WSOP (MSOP) of h ( Y ) .  

Theorem 2.3 Le t  g ( X )  and h ( Y )  be functions,  where 
X and Y have n o  common  variables. Le t  f ( X , Y )  = 
g ( X ) h ( Y ) .  Then ,  

G ( X )  and H ( Y )  are irredundant. 

1. r ( W S 0 P  : f) = T ( W S O P  : g)r(WSOP : h) ,  
2. T ( M S O P  : f )  = r ( M S 0 P  : g ) r ( M S O P  : h).  

(Proof) Available form the authors. 
This result will be useful later when we demonstrate 

functions with a large discrepancy between the number of 
products in the WSOP and in the MSOP. 

3 Comparing the Number of Product 
Terms in a WSOP to the Number in 
an MSOP for Specific Functions 

Definition 3.6 Let  S T ( n , k )  be a symmetric func t ion  of 
n-varzables X I ,  2 2 , .  . . , x n  such that 

n 

0 otherwise ,  

where 
viewed as a n  integer. 
variables that are 1. 

is  ordinary addition i n  which the value of x i  is  
Tha t  is, Cy=l x; is  the number of 

Example 3.1 ST(n,  0)  = 1. ST(n,  :), f o r  even n ,  is  the 
OR of all min terms  with exactly half of the variables com- 
plemented. (End of Example) 

Lemma 3.2 ST(n ,  k )  can be represented as 

sqn, k )  = S { k , k t I ,  .. .) n}S{o,l, ..., n - k } ,  

where 

where A E { 0 , 1 , 2 , .  . . , n } .  

Example 3.2 

ST(n,  1)  = S{1,2 ,..., n}S{0,1, ...) n-1) 

= ( X I  v 2 2  v ... VXn) (E1  v E 2  v .  .. v E n )  

and 

ST(ni = s {2 ,3  ,..., n}S{O,l ,..., n--2) 

= (xIx2 V a l 2 3  v ' . .vXn- l%n)  

(%I f 2  v 21 E 3  v * * * v fn-l En). 

(End of Example) 

We are interested in the total number of PIS in ST(n ,  k), the 
number of PIS in an MSOP for S T ( n , k ) ,  and the number 
of PIS in a WSOP for ST(n,k). We can derive these as 
follows. 

Theorem 3.4 

1)  ST(n,  I C )  has (k, ,& k) = k!&k)!k! PIS, 

2) r ( M S O P  : ST(n ,  k)) = (;) = -. n! 

3) T (WSOP : S T ( n , k ) )  =a(;) - ("). 
(Proof) Available form the authors. 

A special case of Theorem 3.4 occurs when n = 3 and 
IC = 1. 

Corollary 3.1 S T ( 3 , 1 ) ( ~ 1 , 2 2 , 2 3 )  = (21 v 2 2  v x3)(%1 v 
1 2  V 1.3) has the following properties: 

1 )  ST(3,l) has 6 PIS. 
2)  r ( M S 0 P  : S T ( 3 , l ) )  = 3.  
3) r ( W S 0 P  : S T ( 3 , l ) )  = 4. 

Fig. 1 (a) and (b) suggest how the MSOP and WSOP are 
formed. With the MSOP, product terms cover as many 
minterms as possible. With the WSOP, product terms are 
chosen so that as much overlap occurs as possible. No- 
tice that any product term added to  Fig. l(a) or (b) is 
redundant. We now consider the questions posed in the 
introduction. 

Definition 3.7 A set of true min terms  S f o r  f is called 
independent if n o  implicant off contains a pair o f  m in te rms  
in S .  
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x2 

(a)MSOP 
x2 

(b) WSOP 

Figure 1. Karnaugh maps for ST(3,l). 

Figure 2. Map for ST(4,l). 
L e m m a  3.3 Let S be an independent set of minterms f o r  
f .  Then r ( M S 0 P  : f )  2 ISI. 
Example 3.3 Consider the Karnaugh map of ST(4 , l )  
in  Fig. 2. Independent sets for S T ( 4 , l )  include SI = 
{mr,mll,mla,mla} and SZ = {m~,mz ,mr ,ms) .  From 
Lemma 3.3, r ( M S 0 P  : ST(4 , l ) )  2 4. (End of Example) 

Definit ion 3.8 The redundancy ratio of a function f is 

r ( W S 0 P  : f )  
p(f)  = r ( M S 0 P  : f ) .  

The normalized redundancy ratio of an n-variable function 
f is 

4 f )  = m. 
The redundancy ratio is a measure of the discrepancy be- 
tween the number of product terms in WSOPs and MSOPs. 
A small ratio suggests that any logic minimization algo- 
rithm will do well, while a large ratio suggests that care 
should be exercised. The normalized redundancy ratio is 
normalized with respect to the number of variables. It is a 
convenience; i t  allows one to compare the redundancy ratio 
of two functions with a different number of variables. 
Example 3.4 

p(ST(3,l))  = :, a (ST(3 , I ) )  = N 1.1006 
p(ST(4,l))  = z ,  a (ST(4 , l ) )  = @ N 1.1066 
p ( S T ( 5 , l ) )  = t, a ( S T ( 5 , l ) )  = @ N 1.0986 

p(ST(6, l ) )  = 9 ,  a (ST(6 , l ) )  = @ N 1.0889 
p(ST(7, l ) )  = y, a (ST(7 , l ) )  = @ N 1.0800 
p(ST(8,l))  = %, a (ST(8 , l ) )  = & N 1.0725. 

(End of Example) 

For these S T ( n ,  1) functions, U is the largest when n = 4. 
That is, as n increases above 3, U first increases peaking at  
4, and then it continually decreases. 

To understand how poorly an ISOP generator can do, we 
investigate functions with large p. For such functions, the 
choice of algorithm is important; a poorly designed algo- 
rithm can produce ISOPs with many products. When p is 
small, there is less concern; any ISOP generator algorithm 
will do well. Our first result below shows that the S T ( n ,  k) 
functions have reasonably small p. 

Theorem 3.5 

1 I p ( S T ( n ,  IC)) < 2 

(Proof) The first inequality follows from the fact that a 
WSOP has at  least as many product terms as an MSOP. 
The second inequality is proved as follows. 

Since $$ > 0, we have the theorem. I 
\kJ 

Note that the largest p is achieved when n is much larger 
than k, and this value can never be more than 2 .  However, 
one can use S T ( n ,  k) functions to construct functions with 
large p, as follows. 

Definit ion 3.9 Let S T ( n ,  k)' be the n .  r-variable function 

S T ( n ,  k ) P ( ~ i , ~ z , .  . . , x n r )  
r 

= A  ST(^, k)(xn(i-1)+1,  xn(i-1)+2,.  . ., xni ) .  
i=l  

L e m m a  3.4 Let gi(X) be a function with redundancy ratio 
p(g i ) .  Let f(Xi,Xz,. . . ,Xr) = gi(Xi)gz(Xz) ...gr(Xr), 
where X1,Xz,. . . , and X, are pairwise disjoint. Then, 
p ( f )  = n;==, p(gr). 

Theorem 3.6 S T ( n ,  k)' has the following properties: 
1) S T ( n ,  IC)' has ( k , n - z k ,  n r  ,) = ( , ! ( n : ; k ) ! , ! ) r  PIS, 

2) ~ ( M S O P  : S T ( n ,  k)') = (;)'. 
3) ~ ( W S O P  : S T ( n , k ) ' )  = [2(;) - (2;)Ir- 

Example 3.5 For n = 3 and k = 1, ST(3, l ) '  has 6' PIS,  
r ( M S 0 P  : ST(3, I)') = 3', and r ( W S 0 P  : ST(3,l) ' )  = 
4'. (End of Example) 

The ISOP generator developed by Minato [13] is quite fast. 
Unfortunately, it produces WSOPs instead of MSOPs for 
S T ( 3 ,  l )k .  This heuristic logic minimizer produces ISOPs 
that have many more products than MSOPs. This answers 
the first question posed in the introduction. 

We have 
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Theorem 3.7 

p(ST(n ,k ) ' )  = [ 2 - - ; ; I r .  
Example 3.6 For n = 4 and IC = 1 we have 

p(ST(4, l ) ' )  = (1.5)'. 

(End of Example) 

From this, it can be seen that p can be arbitrarily large. 
This answers the second question posed in the introduction. 

4 Extension t o  Multiple-valued Func- 

4.1 Multiple-valued Input Two-valued Out- 

Definition 4.10 A multi-valued input two-valued output 
func t ion  is  f :  PI x P2 x ... x P,, -+ { O , l } ,  where Pi = 

tions 

put Functions 

{ O , l , .  . . ,Pi-l}, pi 2 2. 

Definition 4.11 Xs is  a literal of p-valued variable X ,  
where S Xs = 1 if X = a E S 
and Xs = 0 ,  otherwise. A logical product o f  literals that 
contains at  mos t  one  literal f o r  each variable is  a product 
term or  a product. Products combined with OR operators 
f o r m  a sum-of-products expression (SOP) .  Pr ime impli- 
cants (PI)l irredundant sum-of-products expression ( ISOP) ,  
worst ISOP (WSOP), and m i n i m u m  S O P  (MSOP) are de- 
fined an a manner similar to  the binary case. 

Theorem 4.8 ([17]) Let f be the function defined in Def- 
init ion 4.11. Then ,  

{0 ,1 ,  . . . ,  p - 1). 

n 

r ( M S 0 P  : f )  5 B = +-. 
maxp, 
ZZ1 

When p ,  = 2(2 = 1 , 2 , .  . . , n ) ,  i.e., for switching func- 
tions, B = 2n-1. In this case, r ( W S 0 P  : f )  5 B (The- 
orem 2.1), and r ( W S 0 P  : f )  < B (Theorem 2 . 2 ) .  How- 
ever, for some functions on multiple-valued variables, an 
ISOP (e.g. a WSOP) can have more than B products. i.e., 
r ( W S 0 P  : f )  > B.  

Example 4.7 Consider the func t ion  f :  PI x P2 x P3 x 
P4 x Pg -+ (0, 1}1 where PI = PZ = P3 = P4 = (0, l} and 
PS = { O , l ,  2,3}. The  m a p  is  shown in Fig. 3. Since all 
the implicants are prime and irredundant, the SOP shown 
in the m a p  is a n  ISOP.  Note that this I S O P  requires 17 
products. O n  the other hand, Theorem 4.8 gives B = 16. 
Thus ,  r ( W S 0 P  : f )  > B = 16. (End of Example) 

Example 4.8 Consider the func t ion  M V 0 4 :  PI x Pz x P3 x 
P* x Ps + (0, l}, where PI = P2 = Pa = P4 = {0,1} and 
Ps = {0 ,1 , .  . . ,15}. Fig. 4 shows the positional cube nota- 
t ion [20] of the expression. The  cubes are pr ime and irre- 
dundant,  so this figure represents a WSOP with 16products.  
Note  that the MSOP has only 8 products. (End of Example) 

xs=2 x5 =3 

Figure 3. Multiple-valued function. 

WSOP 
10 10 
10 10 
10 10 
10 10 
10 01 
10 01  
10 01  
10 01 
01 10 
01 10 
01 10 
01 10 
01 01 
01 01 
01 01  
01  01 
MSOP 
10 11 
01 11 
11 01 
11 10 
11 11 
11 11 
11 11 
11 11 

10 10 
10 01 
01  10 
01 01 
10 10 
10 01 
01 10 
01 01 
10 10 
10 01  
01  10 
01 01 
10 10 
10 01 
01 10 
01 01 

11 11 
11 11 
11 11 
11 11 
10 11 
01 11 
11 01 
11 10 

0111111111111111 
1011111111111111 
1101111111111111 
1110111111111111 
1111011111111111 
1111101111111111 
1111110111111111 
1111111011111111 
1111111101111111 
1111111110111111 
1111111111011111 
1111111111101111 
1111111111110111 
1111111111111011 
1111111111111101 
1111111111111110 

0000000011111111 
1111111100000000 
1111000011110000 
0000111100001111 
0011001100110011 
1100110011001100 
1010101010101010 
0101010101010101 

Figure 4. Arrays for the WSOP and MSOP 
for MV04. 

By generalizing the above example, we have the following: 

Theorem 4.9 There exists a func t ion  M V O n :  PI x P2 x 
. . .  x P, x P,+1 + {0,1}, where PI = P2 = ...  = P,, = 
{0,1} and P,+1 = {0,1, .. . ,2n-1}, such that a W S O P  re- 
quires 2" products, while a n  M S O P  requires 2n products. 
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0 

xz 1 

2 

0 1 2  0 1 2  

0 

x2 1 

2 

0 

1 

2 

3 

x2 

0 1 2 3  

x2 

0 1 - 2  3 

0 

1 

2 

3 

(a)MSOP (b) WSOP (a) FI (b) F2 

Figure 5. MV2(X1, X2).  

Definition 4.12 The  funct ion MV2: {0,1, 2}2 --+ ( 0 , l )  
is defined as follows: 

MV2(X1, X2) = X,(o’l’X,(o’ V X{1’2’Xt1) 1 2 V Xto’2’ 1 x2 12’ ‘ 

Figure 6. Expression using truncated sum. 

Fig. 6(a) and (b) are maps f o r  ( I )  and (2), respectively. 
Note that both Fl and F2 are irredundant, and represent 
the same junction. Also, note that F2 consists of non-prime 
implicants. In this case, r ( G )  = 2 and r(F2) = 4. Thus,  
p(f) = 4/2 = 2 and u(f) = A. (End of Example) 

For expressions using truncated sum operators, p ( f )  can 
be larger than in the binary case. For expressions using 
MAX operators, the MSOP can be obtained by minimizing 
expressions for multiple-valued input functions with don’t 
cares [18, 201. 

From Fig 5, we have the following: 

Lemma 4.5 MV2 has the following properties: 

1 )  MV2 has 6 PIS. 
2) r(MSOP:MV2) = 3.  
3) r ( W S 0 P :  MV2)=  4. 

Definition 4.13 A 2lc-variable funct ion MVzk is defined 
as follows: 

k 

M V 2 k ( X ~ , X ~ , . . . j X 2 k )  = A M V ~ ( X Z ~ - I , X Z ~ ) .  
i= l  

Theorem 4.10 MVZk has the following properties: 

I) MV2k has 6k PIS.  
2) r ( M S 0 P :  MV2k)= 3k. 
3) r (WS0P : MV2k) = 4k. 

Thus, p(MV2) = 4/3, u(MV2) = 2/& = 1.154. 
4.2 Multiple-valued Logic Functions 
Definition 4.14 A multiple-valued logic function is f: 
Pn cf PI where P = { 0 , 1 , .  . . , p  - I} and p 2 3.  

In the case of multiple-valued logic functions, two differ- 
ent “sum” operators exist: “ M A X  and “truncated sum.” 
When the expression uses Max operators, we need only con- 
sider the prime implicants. (We assume that the literal 
takes only two values. If the literal can be any function of 
one-variable, then minimum SOP may contain non-prime 
implicant [12]). However, when the expression uses trun- 
cated sum, minimum SOPS may contain non-prime impli- 
cants, as well as prime implicants [5]. 

5 Experimental Results and Observa- 

15.1 Two-valued Case 
We generated ST(n,k)‘ for different n and k, and ob- 

1,ained their ISOPs. To generate ISOPs, we used Minato’s 
inethod [13] which is based on Morreale’s algorithm [14]. 
Minato’s methods produced WSOPs for all the functions 
in Table 1. 

The 9SYM [6, 19, 221 function shown in page 165 of 
[l] is identical to ST(9,3).  It has 1680 PIS, r (WS0P : 
! ) S Y M )  = 148, and r(MS0P : 9 S Y M )  = 84. P O P  [3], 
it PRESTO [2, 211 type logic minimization algorithm, pro- 
duced a solution with 148 products. Thus, P O P  produced 
a WSOP. 
!5.2 Multiple-valued Case 

For multiple-valued functions, we generated MV04’. 
This function has 6400 PIS. To obtain an ISOP, we used 
the following method [4, 8, 201: (note that  Minato’s method 
does not apply to the multiple-valued case). 

tions 

1) Generate the set S of PIS of f .  

2) For each cube c in S ,  do the following: if c is contained 
by S - c, then S + S - c. 

I t  produced an ISOP with 256 products, which is the 
WSOP. The MSOP has only 64 products. So, ~ ( M v 0 4 ~ )  = 
4. 

6 Conclusions and Comments 
The analysis of ISOPs is important because ISOPs are 

so often used in logic synthesis. Their importance, however, 
was recognized 30 years ago when Meo [lo] conjectured that 
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dancv ratio for various functions. 
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n: number of input variables. 
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was the largest number of products in an ISOP of n- 
variable functions. In this paper, we settle this open ques- 
tion, showing indeed that 2’+’ is firm upper bound. 
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We also show a class of functions in which an ISOP gen- 
eration algorithm [13] produces a WSOP, an ISOP with the 
largest number of products. Such functions are useful for 
comparing the performance of two-level logic minimizers. 
We also show, for this class, that  as the number of vari- 
ables increases, p, the  ratio of the number of products in the 
WSOP to the number of products in the MSOP increases 
arbitrarily. These two results clearly show that it is impor- 
tant to  develop good minimization algorithms [l, 4, 8, 161. 
Specifically, it  shows that 1) reasonable algorithms can pro- 
duce poor results and 2) these poor results can be far from 
minimum. 

A key part  of our results is a theorem that allows ns to 
magnify small values of p. T h a t  is, we compose functions on 
many variables with large p from functions on few variables 
with small p. 

We present experimental results and we extend our anal- 
ysis to multiple-valued logic. For example, we show a 
multiple-valued function whose WSOP has four times the 
products than the MSOP. 
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